LABORATORIOS

Electrofisiología experimental y computacional

Electrofisiología experimental y computacional 

Investigación

Personal

Publicaciones

Contacto

Otros

Investigación

La transmisión y procesamiento de información en el SN se lleva a cabo mediante señales eléctricas entre grupos neuronales a lo largo de intrincados circuitos. La complejidad de éstos, el gran volumen de tráfico y su extraordinaria variedad son necesarios para codificar las numerosas variables físicas que el SN mide incesantemente. Parte de esta actividad eléctrica se manifiesta en el registro de potenciales de campo (LFPs), y parte de estos, a su vez, en el electroencefalograma de superficie (EEG). Nuestro grupo ha desarrollado una tecnología para “leer” por separado la actividad de las distintas poblaciones que contribuyen al LFP/EEG y la aplica tanto al estudio de procesos cognitivos como sus alteraciones en neuropatología (migraña, isquemia, neurodegeneración, epilepsia), con el objetivo de detectar actividad anómala en fases tempranas o asintomáticas.

Somos un grupo de electrofisiología cerebral, de origen y tradición multidisciplinar (biología, física, matemáticas, informática), con inclinación hacia los mecanismos biofísicos que rigen el procesamiento de la información neural y sus alteraciones patológicas.

Líneas de investigación

1. Transmisión de actividad normal y anómala en circuitos cortico-hipocámpicos: actividad basal irregular y rítmica en poblaciones neuronales identificadas y vías neurales.

2. Bases celulares y subcelulares del EEG: contribución de los distintos generadores neuronales (diferentes tipos de neuronas y subregiones de las mismas) al EEG.

3. Aplicación al estudio electrofisiológico de neuropatologías y disfunción cerebral (Alzheimer, ictus, epilepsia, migraña).

4. Modelado computacional de neuronas y circuitos.

Herramientas

Electrofisiología (registros con multielectrodos de alta densidad e intracelular), análisis matemático (componentes independientes), y modelos computacionales.

Personal 

Responsable de Grupo:
Oscar Herreras Espinosa

Científicos:
Julia Makarova

Postdoctorales:
Tania Ortuño
Nuria Benito

Predoctorales:
Daniel Torres
Sara Hernández

Publicaciones 

Publicaciones de los últimos años 

  • Tania Ortuño, Victor J. López-Madrona, Julia Makarova, Silvia Tapia-Gonzalez, Alberto Muñoz, Javier DeFelipe, and Oscar Herreras.(2019) Slow-Wave Activity in the S1HL Cortex Is Contributed by Different Layer-Specific Field Potential Sources during Development. Journal of Neuroscience. DOI: 10.1523/JNEUROSCI.1212-19.2019
  • Daniel Torres, Julia Makarova, Tania Ortuño, Nuria Benito, Valeri A Makarov, Oscar Herreras.(2019) Local and Volume-Conducted Contributions to Cortical Field Potentials. Cerebral Cortex. DOI: https://doi.org/10.1093/cercor/bhz061
  • Montes J, Peña JM, DeFelipe J, Herreras O, Merchán-Pérez A. (2015) The influence of synaptic size on AMPA receptor activation: A Monte Carlo model. PlosOne 10(6) e0130924.
  • Martín-Vázquez G, Benito N, Makarov VA, Herreras O, Makarova J. (2015) Diversity of LFPs activated in different target regions by a common CA3 input. Cerebral Cortex doi:10.1093/cercor/bhv211
  • Dreier JP, Reiffurth C, Woitzik J, Hartings JA, Drenckhahn C, Windler C, Friedman A, MacVicar B, Herreras O; COSBID study group. (2015) How spreading depolarization can be the pathophysiological correlate of both migraine aura and stroke. Acta Neurochir Suppl.120:137-40.
  • Herreras O, Makarova J, Makarov VA. (2015) New uses for LFPs: pathway-specific threads obtained through spatial discrimination. Neuroscience Forefront review. http://dx.doi.org/10.1016/j.neuroscience.2015.09.054
  • Makarova J, Ortuño T, Korovaichuk A, Cudeiro J, Makarov VA, Rivadulla C, Herreras O. (2014) Can pathway-specific LFPs be obtained in cytoarchitectonically complex structures? Front. Syst. Neurosci., 8:66.
  • Martin MG, Ahmed T, Korovaichuk A, Venero C, Menchón SA, Salas I, Munck S, Herreras O, Balschun D, Dotti CG. (2014) Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents. EMBO Mol. Med. 6(7):902-917.
  • Enríquez-Barreto L, Cuesto G, Domínguez-Iturza N, Gavilán E, Ruano D, Sandi C, Fernández-Ruiz A, Martín-Vázquez G, Herreras O, Morales M. (2013) Learning improvement after PI3K activation correlates with de novo formation of functional small spines. Front. Mol. Neurosci., 6:54.
  • Martín-Vázquez G, Makarova J, Makarov VA, and Herreras O (2013) Determining the true polarity and amplitude of synaptic currents underlying gamma oscillations of local field potentials. PLoS ONE 8(9): e75499.
  • Fernández-Ruiz A, Muñoz S, Sancho M, Makarova J, Makarov VA, and Herreras O. (2013) Cytoarchitectonic and dynamic origins of giant positive LFPs in the Dentate Gyrus. Journal of Neuroscience 33:15518-32.
  • Fernández-Ruiz A and Herreras O (2013) Identifying the synaptic origin of ongoing neuronal oscillations through spatial discrimination of electric fields. Front. Comput. Neurosci. 7:5. doi: 10.3389/fncom.2013.00005
  • Benito N, Fernández-Ruiz A, Makarov VA, Makarova J, Korovaichuk A, and Herreras O. (2013) Spatial modules of coherent activity in pathway-specific LFPs in the hippocampus reflect topology and different modes of presynaptic synchronization. Cerebral Cortex, DOI: 10.1093/cercor/bht022.
  • Dreier JP, Isele T, Reiffurth C, Offenhauser N, Kirov SA, Dahlem MA, and Herreras O. (2013) Is Spreading Depolarization Characterized by an Abrupt, Massive Release of Gibbs Free Energy from the Human Brain Cortex? Neuroscientist. Feb; 19(1):25-42. doi: 10.1177/1073858412453340.
  • Fernández-Ruiz A, Makarov VA, and Herreras O. (2012) Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long term potentiation in vivo. Front. Neural Circuits, 6:71.
  • Fernández-Ruiz A, Makarov VA, Benito N, and Herreras O. (2012) Schaffer-specific local field potentials reflect discrete excitatory events at gamma-frequency that may fire postsynaptic hippocampal CA1 units. Journal of Neuroscience. 32:5165-5176
  • Gómez-Galán M, Makarova J, Llorente-Folch I, Saheki T, Pardo B, Satrústegui J, and Herreras O. (2012) Altered postnatal development of cortico-hipocampal neuronal electric activity in mice deficient for the mitochondrial aspartate-glutamate transporter. J. Cereb. Blood Flow Metab 32, 306–317
  • Makarova J, Ibarz JM, Makarov VA, Benito N, and Herreras O. (2011). Parallel Readout of Pathway-Specific Inputs to Laminated Brain Structures. Front. Syst. Neurosci. 5:77.
  • Herreras O. (2011) The Whole and The Parts, Development and Aging, Life and Death. J. Cereb. Blood Flow Metab., 31:994-995.
  • Korovaichuk A, Makarova J, Makarov VA, Benito N, and Herreras O. (2010). Minor contribution of principal excitatory pathways to hippocampal LFPs in the anesthetized rat: a combined independent component and current source density study. Journal of Neurophysiology 104:484-497.
  • Makarova J, Makarov VA, and Herreras O. (2010) Generation of sustained field potentials by gradients of polarization within single neurons: a macroscopic model of spreading depression Journal of Neurophysiology, 103:2446-2457.
  • Makarov VA, Makarova J, and Herreras O. (2010). Disentanglement of local field potential sources by independent component analysis. J. Computational Neuroscience, 29:445-457.
  • Canals S, Larrosa B, Pintor J, Mena MA, and Herreras O. (2008) Metabolic challenge to glia activates an adenosine-mediated safety mechanism that promotes neuronal survival by delaying the onset of spreading depression waves. J. Cereb. Blood Flow and Metab. 28 1835-1844.
  • Makarova J, Gómez-Galán M, and Herreras, O. (2008) Variations in tissue resistivity and in the extension of activated neuron domains shape the voltage signal during spreading depression in the CA1 in vivo. Eur. J. Neurosci. 27:444-456.
  • Makarova J, Ibarz JM, Canals S, and Herreras O. (2007) A steady-state model of spreading depression predicts the importance of an unknown conductance in specific dendritic domains. Biophys. J., 92: 4216-4232.
  • Larrosa B, Pastor J, López-Aguado L, and Herreras O. (2006) A role for glutamate and glia in the fast network oscillations preceding spreading depression. Neuroscience 141:1057-1068.
  • Ibarz JM, Makarova J, and Herreras O. (2006) Relation of apical dendritic spikes to output decision in CA1 pyramidal cells during synchronous activation: a computational study. Eur. J. Neurosci. 23: 1219-1233.
  • Herreras O. (2005) Electrical prodromals of spreading depression void Grafstein’s potassium hypothesis. Journal of Neurophysiology 94:656-657.
  • Canals S, Makarova J, López-Aguado L, Largo C, Ibarz JM, Herreras O. (2005) Longitudinal depolarization gradients along the somatodendritic axis of CA1 pyramidal cells: a novel feature of spreading depression. Journal of Neurophysiology 94:943-951.
  • Canals S, López-Aguado L, and Herreras O. (2005) Synaptically-recruited apical currents are required to initiate axonal and apical spikes in hippocampal pyramidal cells: modulation by inhibition. Journal of Neurophysiology.93:909-918.
  • López-Aguado L, Ibarz JM, Varona P, and Herreras O. (2002) Structural inhomogeneities differentially modulate action currents and population spikes initiated in the axon or dendrites. Journal of Neurophysiology, 88:2809-2820.
  • López-Aguado L, Ibarz JM, and Herreras O. (2001) Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials. Neuroscience, 108:249-262.
  • Varona P, Ibarz JM, López-Aguado L, and Herreras O. Macroscopic and subcellular factors shaping CA1
  • López-Aguado L, Ibarz JM, and Herreras O. (2000) Modulation of dendritic action currents decreases the reliability of population spikes Journal of Neurophysiology, 83:1108-1114.
  • Rodríguez-Moreno A, Herreras O, and Lerma J. (1997) Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron, 19:893-901.
  • Largo C, Ibarz JM, and Herreras O. (1997) Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. Journal of Neurophysiology 78:295-307.
  • Largo C, Tombaugh G, Aitken PG, Herreras O, and Somjen GG. (1997) Heptanol but not fluoroacetate prevents the propagation of spreading depression in rat hippocampal slices. Journal of Neurophysiology 77:9-16.
  • Lerma J, Morales M, Vicente MA, and Herreras O. (1997) Glutamate receptors of the kainate type and synaptic transmission. Trends in Neurosciences, 20:9-12.
  • Largo C, Cuevas P, Herreras O. (1996) Is glia disfunction the initial cause of neuronal death in ischemic penumbra? Neurol. Res, 18:445-448.
  • Largo C, Cuevas P, Somjen GG, Martín del Río R, and Herreras O. (1996) The effect of depressing glial function on rat brain in situ on ion homeostasis, synaptic transmission and neuronal survival. Journal of Neuroscience, 16:1219-1229.
  • Herreras O, Largo C, Ibarz JM, Somjen GG, and Martín del Río R. (1994) Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus. Journal of Neuroscience 14:7087-7098.

Contacto

Dónde encontrarnos

Laboratorio de Electrofisiología experimental y computacional

Instituto Cajal CSIC. Avda. Doctor Arce, 37. 28002. Madrid

Llámanos

Teléfono:

+34 915 854 725

Escríbenos un mensaje

Correo electrónico:

herreras@cajal.csic.es

Otros 

Ir al contenido